

Rom. 1:20

His invisible attributes ... understood by the things that are made

- -His Eternal Power
- –His Divine Nature (Godhead)

Argument from Design

Search for Extra Terrestrial Intelligence - SETI

SETI Allen Telescope Array Optical SETI

Interstellar Message Construction

Project Phoenix (past search)

Background Science

History of SETI

Center for SETI Research Team

The Center for SETI Research

SETI, the Search for Extraterrestrial Intelligence, is an exploratory scieng the universe by loo technology, Our on Earth sugge and sufficier Whether e technolo

hat seeks evidence of life in for some signature of its understanding of life's origin given a suitable environment ill develop on other planets. ve rise to intelligent, is open to speculation. on could be detected across d may actually offer our vering extraterrestrial life

technological civilizations

ant effort. Currently the Center for SETI Research develops signal-

SETI, the Search for Extraterrestrial Intelligence, is an exploratory science that seeks evidence of life in the universe by looking for **some signature** of its technology...

SETI

Search for Extra - Terrestrial Intelligence

Signal Received from Space

What if we received a message from space with a language we could decode and read?

Signs of Intelligent Design Right Here on Earth

- Every living cell is full of signs of intelligent design.
- Including a language which we have learned to decode and read!

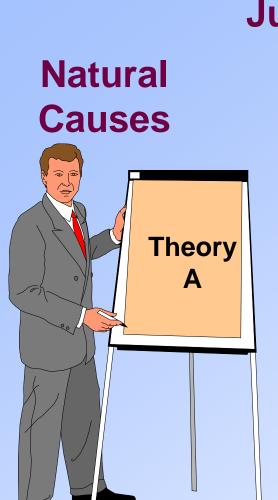
Anthony Flew Professor of Philosophy

Former atheist, author and debater 2004

"It now seems to me that the findings of more than fifty years of DNA research have provided materials for a new and enormously powerful argument to design."

Signs of Intelligent Design Right Here on Earth

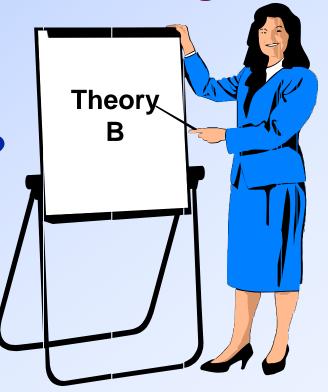
- Every living cell is full of signs of intelligent design.
- Including a language which we have learned to decode and read!
- Research on DNA continues to reveal signs of DESIGN.
- Anthony Flew "had to go where the evidence leads."


Signature in the Cell Dr. Stephen C. Meyer 2009

SIGNATURE IN THE CELL

DNA AND THE EVIDENCE FOR INTELLIGENT DESIGN

STEPHEN C. MEYER



Which is more reasonable?

EVIDENCE Facts of nature

Intelligent Design

Critical Components of Life

Components

Assembled

Organic Compounds

Structural Materials

Proteins

(assembled from

amino acids)

Tools and

Machinery

Blueprints

Enzymes

(special forms of

proteins)

Genes - Nucleic Acid

(DNA and RNA)

Function

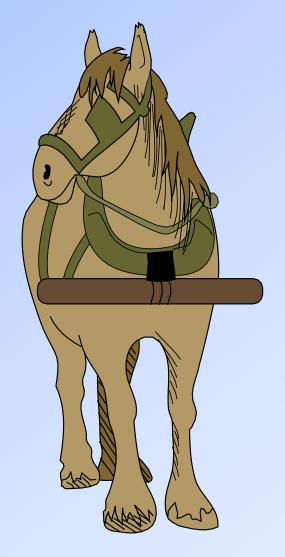
Construction

(shape and mobility)

Metabolism

(growth and

maintenance)


Reproduction

(information and

directive function)

Two Types of Proteins

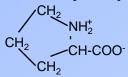
- Structural
- Enzymes

Workhorses

The Twenty Common Amino Acids Occurring in Proteins

Glycine (Gly)

 NH_3^+ H-CH-COO-


CH₃-CH-COO

CH₃ NH₃

CH₃ NH_3^+ CH₃ CH - CH-COO- CH₃CH CH₂-CH-COO-

Alanine (Ala) Valine (Val) Leucine (Leu) Isoleucine (Ileu)

CH₃ NH₃ CH₃CH₂CH - CH-COO⁻

Proline (Pro) Serine (Ser) Threonine (Thr) Aspartic acid Asparagine

OH NH₃ CH₂-CH-COO-

OH NH₃ CH₃ CH - CH-COO⁻

COOH NH₃ (Asp)

CH₂ - CH - COO-

 $CO NH_2 NH_3^+$ (Asp N)

CH₂ - CH - COO-

Glutamic acid Glutamine (Glu N) Lysine (Lys) Arginine (Arg) Cysteine (CySH)

(Glu)_{COOH NH3} CH₂CH₂-CH-COO-

CO NH₂ NH₃ NH₂

 NH_3^+ CH₂CH₂-CH-COO CH₂CH₂CH₂CH₂-CH-COO CNH CH₂CH₂CH₂-CH-COO

 NH_{3}^{+} NH

SH NH₃ CH₂-CH-COO-

Methionine (Met) Phenylalanine Tyrosine (Tyr)

S-CH₃ NH₃ CH₂CH₂-CH-COO

СН₂-СН-СОО- НО С СН₂-СН-СОО-

Tryptophan (Try) NH₃ –C-CH₂-CH-COO-

Histidine (His)

 $\begin{array}{ccc} N - C & NH_3^+ \\ H & C & C - CH_2 - CH - COO^- \end{array}$

The Twenty Common Amino Acids Occurring in Proteins

Glycine (Gly)

 NH_3^+ H-CH-COO-

Alanine (Ala)

 NH_3^+ CH₃-CH-COO-

Valine (Val)

CH₃ NH₃ CH₃ CH - CH-COO-

Leucine (Leu)

CH₃ NH_3^{\dagger} CH₃CH CH₂-CH-COO⁻

Isoleucine (Ileu)

CH₃ NH₃ CH₃CH₂CH - CH-COO

Proline (Pro)

Glutamic acid (Gl

Serine (Ser)

Threonine (Thr)

Aspartic acid (As

Asparagine (Asp N)

CO NH₂ NH₃⁺ CH₂ - CH - COO-

COOH NH₃ CH2CH2-CH-COO

Every protein is a

combination of these 20.

NH

Cysteine (CySH)

SH NH₃ CH₂-CH-COO-

Methionine (Met)

S-CH₃ NH₃ CH₂CH₂-CH-COO-

Phenylalanine (Phe)

CH₂-CH-COO

Tyrosine (Tyr)

HO (CH₂-CH-COO-

Tryptophan (Try)

 NH_3^+

Histidine (His)

The Twenty Common Amino Acids Occurring in Proteins

Glycine (Gly)

NH₃
H-CH-COO-

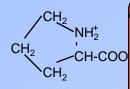
Alanine (Ala)

NH₃⁺ CH₃-CH-COO⁻

Valine (Val)

CH₃ NH₃⁺ CH₃ CH - CH-COO⁻

Threonine (Thr)


Leucine (Leu)

CH₃ NH₃⁺ CH₃CH CH₂-CH-COO⁻

Isoleucine (Ileu)

CH₃ NH₃⁺ CH₃CH₂CH - CH-COO⁻

Proline (Pro)

Glutamic acid (Gl

COOH NH₃ CH₂CH₂-CH-COO

Serine (Ser)

Like the 26 letters of the alphabet which make up our words

Aspartic acid (Asp) Asparagine (Asp N)

 $\begin{array}{ccc} \text{CO NH}_2 & \text{NH}_3^{\dagger} \\ \text{CH}_2 & \text{-CH -COO}^{-} \end{array}$

Cysteine (CySH)

SH NH₃ CH₂-CH-COO

Methionine (Met)

S-CH₃ NH₃ CH₂CH₂-CH-COO

Phenylalanine (Phe)

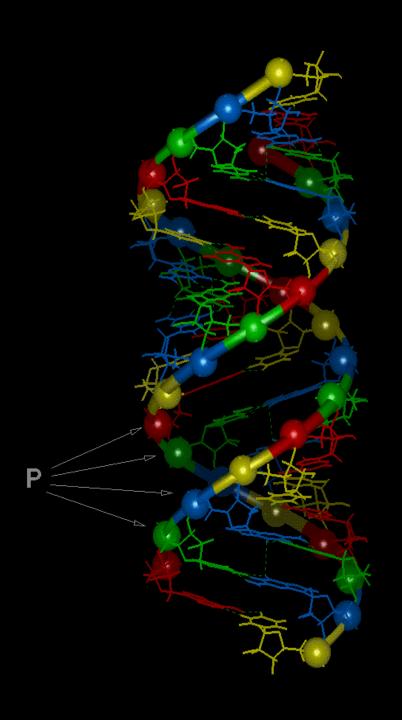
Tyrosine (Tyr)

HO
$$\stackrel{\rm NH}{\stackrel{\scriptscriptstyle \wedge}{}}{}^{\scriptscriptstyle \wedge}$$
 CH $_2$ -CH-COO-

Tryptophan (Try)

NH

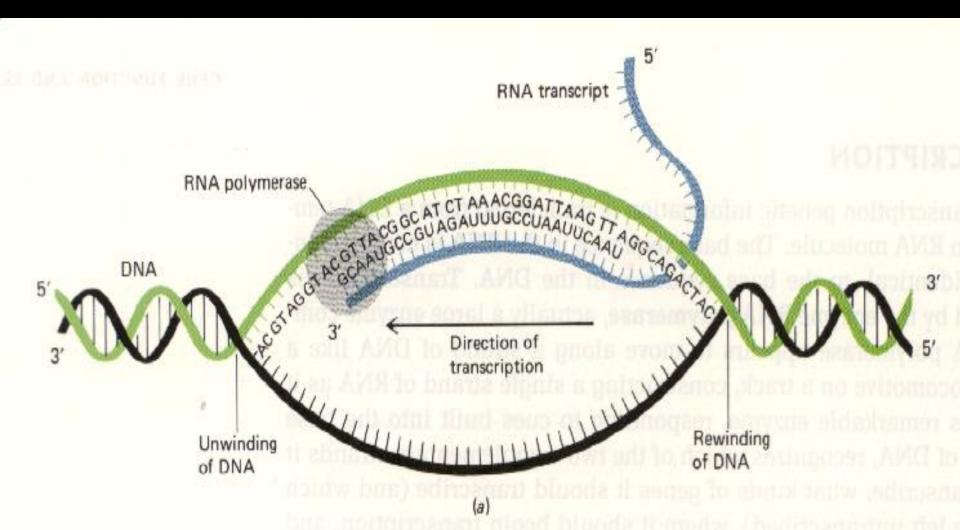
Histidine (His)


Dumb Blondes of the Biochemical World

Dr. Francis Crick in Life Itself

• DNA

• RNA



DNA

Certain characteristic structure **Double helix with** cross bars **Capacity to** reproduce itself

A DNA double helix is unwound by RNA polymerase, giving the enzyme access to the nucleotide sequence.

First Base	Second Base				
	U	С	А	G	
U	phenylalanine	serine	tyrosine	cysteine	U
	phenylalanine	serine	tyrosine	cysteine	С
	leucine	serine	stop	stop	Α
	leucine	serine	stop	tryptophan	G
	leucine	proline	histidine	arginine	U
С	leucine	proline	histidine	arginine	С
	leucine	proline	glutamine	arginine	Α
	leucine	proline	glutamine	arginine	G
	isoleucine	threonine	asparagine	serine	U
Α	isoleucine	threonine	asparagine	serine	С
A	isoleucine	threonine	lysine	arginine	Α
	(start) methionine	threonine	lysine	arginine	G
G	valine	alanine	aspartate	glycine	U
	valine	alanine	aspartate	glycine	С
	valine	alanine	glutamate	glycine	Α
	valine	alanine	glutamate	glycine	G

First	Second Base						Third Base
Base	U		С	Α		G	
U	phenylal	ohenylalanine serine		tyrosine	cysteine		U
	phenylal	alanine serine		tyrosine	cysteine		С
	leucine		serine	stop	stop		Α
	leuci	leucine serine stop tryptophan		otophan	G		
	leuci	ne	proline	histidine	ar	ginine	U
С	leu		11 20	Amino		ginine	С
C	leu	F		4 1111110		ginine	Α
	leu	Ac	ids ar	e Code	h	ginine	G
	isole					<mark>erine</mark>	U
Α	isole		He	re		erine	С
A	isoleu	cine	threonine	lysine	ar	ginine	Α
	(start) methionine		threonine	lysine	arginine		G
G	valine		alanine	aspartate	glycine		U
	valine		alanine	aspartate	glycine		С
	valine		alanine	glutamate	glycine		Α
	valine		alanine glutamate		glycine		G

First	Second Base				
Base	U	С	Α	G	
U	phenylalanine	serine	tyrosine	cysteine	U
	phenylalanine	serine	tyrosine	cysteine	С
	leucine	serine	stop	stop	Α
	leucine	serine	stop	tryptophan	G
С	leucine	leucine proline		arginine	U
	leucine proline		histidine	arginine	С
	leucine	proline	glutamine	arginine	Α
	leucine	proline	glutamine	arginine	G
A	isoleucine	threonine	asparagine	serine	U
	isoleucine	threonine	asparagine	serine	С
	isoleucine	threonine	lysine	arginine	Α
ding	(start) methionine	threonine	lysine	arginine	G
G	valine	alanine	aspartate	glycine	U
	valine	alanine	aspartate	glycine	С
	valine	alanine	glutamate	glycine	Α
	valine	alanine	glutamate	glycine	G

AUG = Start Reading

U C A
C A
Α
G
U
С
Α
G
U
С
Α
G
U
С
Α
G

Second Rase

SETI

Search for Extra - Terrestrial Intelligence

Signal Received from Space

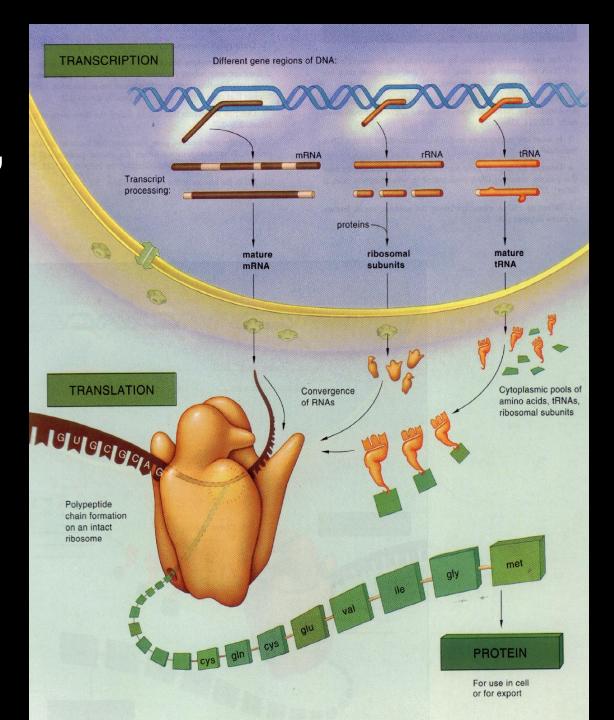
What if we received a message from space containing the genetic code?

SETI

Search for Extra - Terrestrial Intelligence

The Genetic Code

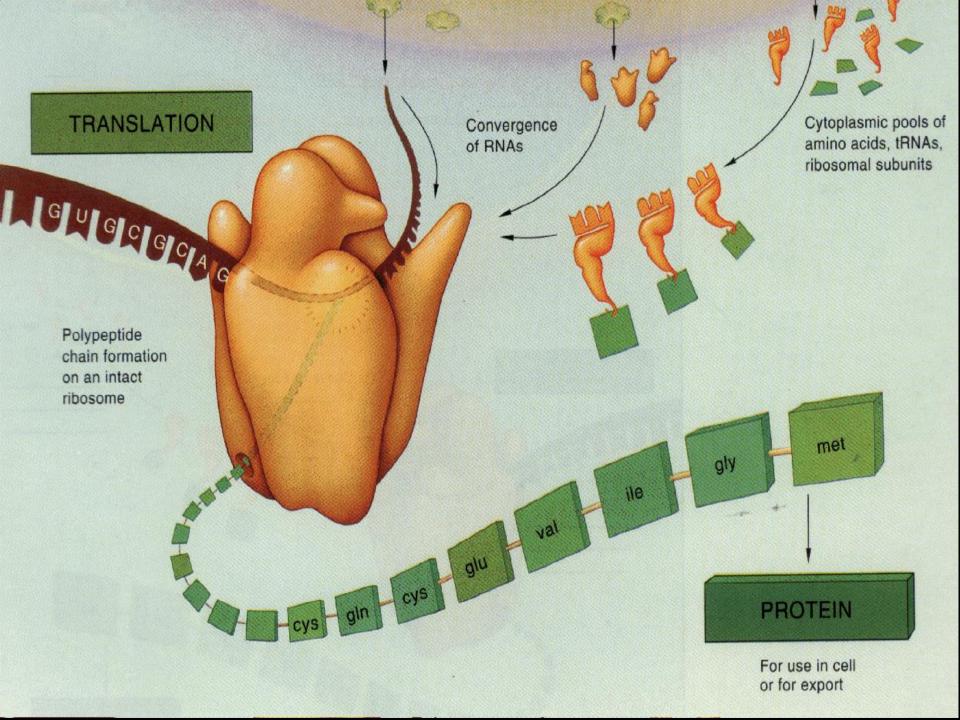
The SETI organization and other reasonable people would certainly conclude this came from an intelligent source!!


First	Second Base					
Base	U	C A		G		
C	phenylalanine	serine	tyrosine	cysteine	U	
	phenylalanine	serine	tyrosine	cysteine	С	
	leucine	serine	stop	stop	Α	
	leucine	serine	stop	trvotophan	G	
	However, there is					
С	MUCH MORE					
	to the description of life					
	as we know it than just					
A						
A	the genetic code!!!					
	(start) methionine	threonine	lysine	arginine	G	
G	valine	alanine	aspartate	glycine	U	
	valine	alanine	aspartate	glycine	С	
	valine	alanine	gluamate	glycine	Α	
	valine	alanine	gluamate	glycine	G	

Transcription,

Migration,


& Translation


for Protein Building

TRANSCRIPTION

Different gene regions of DNA:

Evolution of Genetic Code

"Did the code and the means of translating it appear simultaneously in evolution? It seems almost incredible that any such coincidences could have occurred, given the extraordinary complexities of both sides and the requirement that they be coordinated accurately for survival. By a pre-Darwinian (or a skeptic of evolution after Darwin), this puzzle surely would have been interpreted as the most powerful sort of evidence for special creation." Caryl P. Haskins, American Scientist 298, 305 (1971)

A Disturbing Riddle

"What makes the origin of life and of the genetic code a disturbing riddle is this: the genetic code is without any biological function unless it is translated; that is, unless it leads to the synthesis of the proteins whose structure is laid down by the code. But, as Monod points out, the machinery by which the cell...translated the code 'consists of at least fifty macromolecular components which are themselves coded in DNA.' Thus the code cannot be translated except by using certain products of its translation. This constitutes a really baffling circle: a vicious circle, it seems, for any attempt to form a model, or theory, of the genesis of the genetic code." Popper in Studies in the Philosophy of Biology 259, 270 (1974)

A Disturbing Riddle

"What makes the origin of life and of the genetic code a disturbing riddle is this: the genetic code is without any biological function unless it is translated; that is, unless it leads to the synthesis of the proteins whose stuture is laid dow.

machine of at lea themsely translate

The old chicken and egg problem

onsists

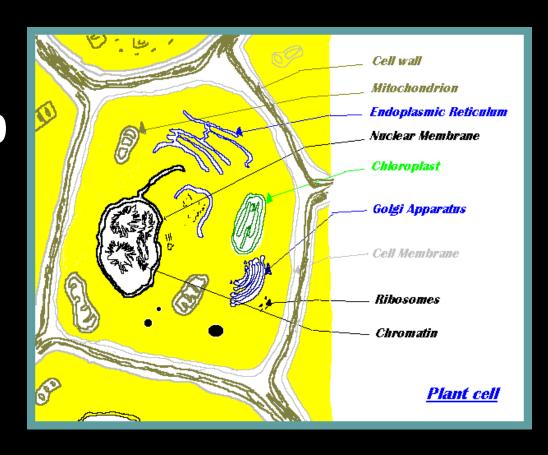
ch are

not be

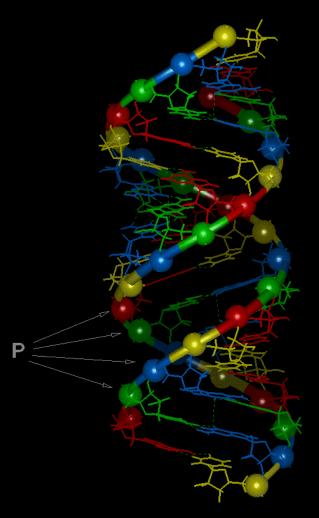
of its

translating true and true and

Summary of The Puzzle


- DNA contains the code
- It takes many proteins to transcribe and translate the code to build proteins
- These proteins are themselves coded in the DNA
- To produce these proteins from the code requires the proteins themselves
- WHICH CAME FIRST?

The Marvelous Living Cell


"A living cell is a marvel of detailed and complex architecture. Seen through a microscope there is an appearance of almost frenetic activity. On a deeper level it is known that molecules are being synthesized at an enormous rate. Almost any enzyme catalyzes the synthesis of more than 100 other molecules per second. In ten minutes, a sizable fraction of the total mass of a metabolizing bacterial cell has been synthesized. The information content of a simple cell has been estimated as around 10¹² bits, comparable to about a hundred million pages of the Encyclopedia Britannica." Sagan, "Life," Encyclopedia Britannica: Macropaedia 894 (15 ed. 1974)

The Marvelous Living Cell

Over 200,000 molecules are being built per second

DNA

- But what about junk DNA?
- Only about 5% of DNA used for protein building
- Some say that DNA is 95% junk.

Evidence that suggests that such DNA is probably functional

- ☐ Most non-protein coding DNA is coded into various RNA's
- ☐ Many non-protein-coding DNA sequences are conserved (similar in different organisms)

Evidence for specific biological functions of non-protein-coding DNA

☐ RNA's from this DNA play significant roles in controlling whether, where & to what extent protein-coding regions are transcribed

Evidence for specific biological functions of non-protein-coding DNA

- **□** Introns have functions
 - ☐ Rich in splicing-factor recognition sites
 - ☐ Encode a majority of the small RNA's
 - ☐ RNA's from introns influence gene expression by modifying chromatin

Recent Discoveries About the Cell's Informational System

Densely concentrated, specified information in DNA

- ☐ Multiple messages stored in the same sequence of bases
- ☐ "Spliceosomes" and "editosomes"
- ☐ Code within a code
- **□** Dual and overlapping messages

Signature in the Cell by Dr. S. Meyer

Evidence for specific biological functions of non-protein-coding DNA

- □ Pseudogenes
 - ☐ Some have produced functional proteins
 - □ Some produce RNA's that suppress the expression of their corresponding functional genes.
 - ☐ Some produce RNAs that increase the expression of their corresponding functional genes

Evidence for specific biological functions of non-protein-coding DNA

- **☐** Repetitive non-protein-coding DNA
 - ☐ LINEs Long Interspersed Nuclear Elements
 - ☐ SINEs Short Interspersed Nuclear Elements
 - ☐ ERVs Endogenous Retroviruses

Recent Discoveries About the Cell's Informational System

A files-within-folders system to make retrieving, manipulating, and expressing information-rich data more efficient

- ☐ Similar to words, sentences, & paragraphs
- ☐ Genes, gene folders and superfolders, & "isochores" (megafolders)

Signature in the Cell by Dr. S. Meyer

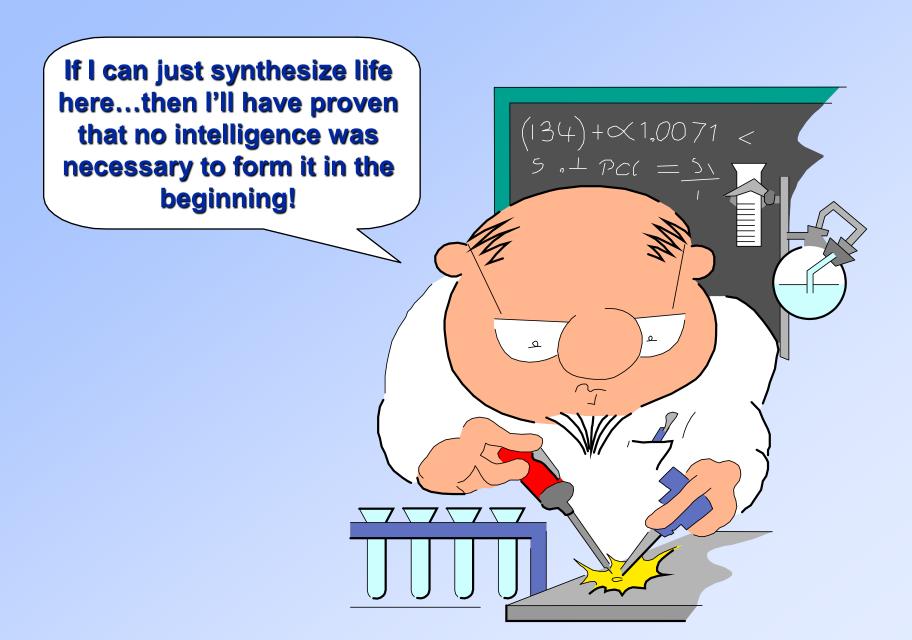
SETI

Search for Extra - Terrestrial Intelligence

Signal Received from Space

If we received a message from space containing just the genetic code and an explanation of how it is used to build proteins, everyone would conclude the source was intelligent!!

Intelligent Design or Natural Causes Which is more reasonable?


- "Everywhere we look, from the macroscopic to the microscopic things look like they are MADE"
- "A loud, clear, piercing cry of DESIGN!!"

Darwin's Black Box by Dr. M. Behe

Life Itself

"An honest man, armed with all the knowledge available to us now, could only state that in some sense, the origin of life appears at the moment to be almost a miracle, so many are the conditions which would have had to have been satisfied to get it going. But this should not be taken to imply that there are good reasons to believe that it could not have been started on the earth by a perfectly reasonable sequence of fairly ordinary chemical reactions...

If it was highly likely, there is no problem. But if it turns out that it was rather unlikely, then we are compelled to consider whether it might have arisen in other places in the universe where possibly, for one reason or another, conditions were more favorable." Francis Crick, *Life Itself: Its Origin and Nature*, Winner of the Nobel Prize for Physiology or Medicine, 1962, p. 92

